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The Role of Observational Errors in Optimum Interpolation Analysis

1. Introduction

With the advent of new observing systems and the approach of the First
GARP Global Experiment (FGGE), it appears desirable for data providers to
have some knowledge of how their product is to be used in the statistical
"optimum interpolation" analysis schemes which will operate at most of the
Level III centers during FGGE. It is the hope of the author that this
paper will serve as a source of information on the way observational data
is handled by optimum interpolation analysis schemes.

The theory of optimum interpolation analysis, especially with regard
to the role of observational errors, is reviewed in Section 2. In Section
3, some comments about determining observational error characteristics are
given along with examples of same. Section 4 discusses error-checking
procedures which are used to identify suspect observations. These latter
procedures are an integral part of any analysis scheme.

2. Optimum Interpolation Analysis

The job of the analyst is to take an irregular distribution of obser-
vations of variable quality and obtain the best possible estimate of a
meteorological field at a regular network of grid points. The optimum
interpolation analysis scheme attempts to accomplish this goal by mini-
mizing the mean square interpolation error for a large ensemble of analysis
situations. The method is best described in the literature by Gandin (1963)
and Gandin and Kagan (1974). Applications of optimum interpolation to
multivariate analysis problems are given by Schlatter (1975), Bergman (1976),
and Rutherford (1976). The univariate theory is presented below, but the
extension to the multivariate case is straightforward insofar as observa-
tional errors are concerned. 

Consider a model grid point and level (which may be an isobaric, isen-
tropic, or isohypsic level, or the midpoint of a model "sigma-layer") and
the observations contained in a specified neighborhood volume about the
grid point. This volume is usually no greater than 15° latitude horizontal
radius and half the total atmosphere in pressure-thickness. Let F be a
meteorological field which is being analyzed. We wish to estimate the
true value Fa which applies at grid point/level "a" from the n observed
values Fi in its vicinity and a reasonably good "guess" value Fa. The
"guess" is usually a short-period forecast, persistence, climatology, or
some blend of these.

The procedure is to interpolate the gridded field F to the locations
of the observations by a simple method. The difference

=i Fi - Fi; i = 1,n (1)
, _~~~~~ -i,
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between the observed and guessed values at the location of each observation
is computed. These fi are commonly referred to as "residuals." We recog-
nize that the residual of the ith observation consists of two components,

fi = fi + (2)I1 1

where fi is the difference between the true value Fi and the guess value
Fi (the "true residual," in contrast to the "observed residual" fi), and
ei is the observational error.

The analyzed value Fa at the particular grid point and level considered
is then obtained by adding a weighted linear sum of the observed residuals
to the guess value Fa,

A n

Fa = Fa+ c ifij1
n

=Fa + c (fi +
(3)

where ci is the weight to be assigned to the residual of the ith observation.

Depending on how these weights are determined, the mean square error of
the analyzed value Fa for a large ensemble of analyses is given by

n
E2 (Fa- Fa)2 = [Fa -Fa a - ci(fi + i ) ] 4)

The statistical optimum interpolation scheme requires that the weights
be chosen so that U is a minimum. Hence, differentiating i partially
with respect to each of the ci and equating to zero leads to the following
set of equations:

n (fi+ i) (fj )cj f(fi+ ji); i = 12 ... n

or, expanding the product terms,

n
jl (fifj + fie + i+ j)i = fafi + fai ; i = 1,2,...,n (5)

These linear equations may be solved for the ci provided the quantities
TT, T. , etc., can be specified. (These quantities are covariances
on if te Tand are zero, strictly speaking.)only if tie f-iand E--are zero, strictly speaking.)
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4W In actually carrying out the computations, it is convenient to express
this set of equations in the following normalized form:

n
X (Vij + Tij.j + Tjiai + Pi iaj)c = 1ai + Taii i = 1,2,...,n (6)j=1- ~ ~ j 1 ~j aiai ci

where ij fifi i vf7

Bij E fify/i fj~ 

P.. ei~/ ~i2ej-2)½

0 C~i E eg2~ / )~

and - Eti2i a Ejcj 2 If 2 j .'

The first of these terms, pij, is the correlation of the true residual
at the ith observational location with that at the jth location. It also
appears on the right side of (6) as Pai, the correlation between the true
residual at the grid point/level (which is what we-are trying to estimate
as closely as possible) and that at the ith observational location. This
correlation is a function of location only and it is obviously dependent
on the characteristics of the guess field .F as well as the true field F.
There is a considerable literature on the determination of this correlation,
for example Thiebaux (1975, 1976), Julian and Thiebaux (1975), Hollett
(1975), and Bergman (1977). In currently operational optimum interpolation
analysis schemes, various simplifying assumptions are made about the nature
of the i correlation, and it is represented by an analytical function of
the distance separating the two locations involved. In those schemes which
use data at pressures other than the pressure at which the analyzed value
is required, the three-dimensional correlation is approximated by the
product of a two-dimensional isobaric correlation function and a one-
dimensional correlation function which depends on the pressure difference
between the two locations.

There is some controversy over whether these approximate-representations
of the p correlation seriously compromise the results of the objective
analysis schemes using them, see Thiebaux (1976, 1977), but the weight of
current opinion is that the analysis results are relatively insensitive to
the finer details of how the p-correlation is specified (Schlatter, et al.,
1977; P. Julian, personal communication). In any event, this correlation
is in general dependent on the specific characteristics of the analysis/
guess system being used and must be specified by the analyst. Hence it
need not concern the data provider.

The second correlation, Tij, is that between the true field residual at
one location with the observational error at another location. It also
appears on the right side of (6) as Tai. This correlation will be non-
zero for an observing system which uses the same guess field, say a 12-hour
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forecast, as the analysis scheme uses. An example is the minimum-retrieval
method formerly used operationally to construct temperature profiles from
VTPR radiance data (McMillin, et al., 1973). However, the T-correlation
may be nonzero even for other observing systems if both the observations
and the guess field describe a smoothed version of reality. For example,
satellite derived temperature fields typically have weaker gradients than
those indicated by conventional data (Desmarais, et al., 1978), and these
errors may correlate with similar errors in a forecast or climatological
guess field.

The T-correlation is a difficult term to evaluate, and to date no one
has attempted to do so. All the currently operational analysis schemes
assume that this correlation is uniformly zero, with the hope that observing
systems will not rely strongly on a forecast or other guess field in deter-
mining their values, and that the unavoidable correlation due to data
smoothing is relatively weak and unimportant compared to the other corre-
lations.

The third correlation, Pij, is that which exists between two observa-
tions at different locations. For many pairings of observations this
correlation is zero. It has been demonstrated by Bergman and Bonner (1976),
Schlatter and Branstator (1978), and others that errors in satellite temper-
ature measurements from the same orbital pass are horizontally correlated,
and by C, Hayden of NESS (1977, unpublished) and by Schlatter and Branstator
(1978) that the same errors are correlated in the vertical for a sounding.
However, the latter authors find that the vertical correlation is a weak
one. Hollett (1975) has demonstrated that rawinsonde errors in height,
temperature, and wind measurements are all correlated vertically to some
extent. The situation for other observing systems, such as satellite winds,
is unknown. As shown by Bergman and Bonner (1976), the effect of a spatial
correlation of observational errors is to reduce the amount of independent
information that the observations provide in a univariate analysis. On the
other hand, Seaman (1977) has shown that gradient information in multi-
variate analysis is preserved by the presence of spatially correlated errors.
An example of the latter case is the use of geopotential height observations
in the analysis of the wind field with an assumed geostrophic wind relation-
ship.

Finally, the normalized root-mean-square observational error, ai, for
each of the observations appears in the set of equations (6) for determining
the weights. This is simply the ratio of the RMS observational error to
the RMS "true residual" (essentially the RMS error of the guess field).
The former is a property of the observing system and, if the individual
errors are known, may vary from one observation to another within a set of
observations all from the same observing system.
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Substitution of (5) in (4) and normalizing the resulting equation with
respect to Tfa2 yields the following expression for the normalized estimated
mean square analysis error:

n

Oa2 = 1 - X cj (['ai + Taiai), (7)C~~~~ + T ~~~~~~(7)
i=1

where

a2 _ E/faa2 .

Although the error correlations Pij do not appear explicitly in (7), never-
theless the weights ci as determined by (6) are a function of the Pij.1~~~Therefore, the analysis error aa is an implicit function of the Pij.
Similarly, the weights ci are a function of the observational errors ai
even when the Tai are zero, consequently aa2 is implicitly dependent on the
observational errors ai.

The following simple example illustrates the dependence of analysis error
on the observational error characteristics. Following Gandin, et al. (1972),
consider three observations which are equidistant from a grid point and also
from each other. Hence the three observations from an equilateral triangle
of length h on a side, where h// is the distance between the centrally
located grid point and each observation. Assume that the observations all
have the same error a, that the correlations p(s) and p(s) are functions of
separation distance only, and that the T correlation can be neglected. Then
the weights of all three observations are the same and are given by

(h//33)

1: + 2p(h) + a1[l + 2p(h)] (8)

and the normalized mean-square-analysis error by

Oa2a= 1 - 3P2 (h/'3)a 2 = 1 _' ~~~~~~~~~~~(9)
a =1 1 + 2p(h) + a2 1± + 2p(h)]

Thus, for this case, the analysis error increases as the observational
error a increases, as would be expected. This result is generally true for
any number and distribution of observations. Additionally, the magnitude
of aa increases as the error correlation p increases, especially if the
error a is relatively large. This result is also generally true for uni-
variate analyses and is a reflection of the loss of independent primary
information provided by observations whose errors are correlated. On the
other hand, information derived from the difference between a pair of obser-
vations, such as the gradient of the mass field, will have a smaller effective
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error when the individual errors of the observations are correlated. Thus,
for example, geopotential heights with spatially correlated errors will
result in larger errors in the analyzed heights, but smaller errors in
analyzed height gradients, than will the same data with uncorrelated
errors.

From the foregoing, it is obviously important that both the observa-
tional errors and the error correlations should be specified with reason-
able accuracy if the observations are to receive their correct weights in
the analysis. Only in this way will the analysis error actually be close
to the theoretical minimum that is implied by the particular types and
distributions of the observations used for the analysis. This is so
because the minimization of (4) implies that any assignment of observational
weights other than those implied by (6) will always result in a larger
value of analysis error as given by (7).

3. Determination of Observational Error Characteristics

First, the observational error C will be discussed, and then the corre-
lation of observational errors p will be taken up. In both cases, the

___ determination of these quantities is beset with difficulties. __

a. Observational Errors

At least four methods have been used to determine the statistical
observational error levels of various observing systems. These are:

(1) Theoretical and laboratory estimates of instrumental, transmission,
recording, and interpretative errors involved in obtaining the
observation.

(2) Extrapolation of the variance of the difference between pairs of
separated observations to zero separation.

(3) Comparisons with other observations whose error level is either
known or assumed to be small.

(4) Comparison with an analysis,-.:preferably constructed from other
types of observations than those whose error is being determined-.- -

There may be other methods which have been tried or which have potential.

The first of these is frequently considered to be an underestimate
of the observational error appropriate for use in objective analysis. Pri-
marily, this is because the sub-grid-scale features of atmospheric flow which
may be measured by the observing system must be considered as "noise" super-
imposed on a gridded objective analysis. This noise becomes part of the random
error of the observation. In this respect, an observing system which
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has the same degree of smoothness and resolution as that of the analysis
grid would be preferred. Note that this comment refers not to the spacing
of observations, but rather to the volume sampled by a single observation.
The difference between the observational error at a point and the observa-
tional error appropriate to a given resolution is illustrated by a study
of Bruce, et al. (1977). In this study, the variances of the observed
temperature difference between pairs of closely spaced radiosonde soundings
at White Sands Missile Range, New Mexico, are computed. Extrapolation of
these variances, plotted as a function of separation distance, to zero
separation gives an estimate of the observational error at a point. The
resulting estimates of error standard deviation range from 0.5° to 1.0°C,
depending on altitude. Using linear interpolation and areal averaging,
Bruce, et al., then proceed to demonstrate that the expected difference
between a point radiosonde temperature measurement and the corresponding
mean temperature for a 100 km square area is between 1.0 and 1.4°C. The
reader is referred to the paper cited above for details of the method.

The most prevalent way of assessing the error magnitudes of new observing
systems is comparison with rawinsonde observations, or with an analysis con-
structed from them. An example for rawinsonde vs. satellite VTPR temperatures
at mandatory levels is shown as Fig. 1 (Courtesy of Product Systems Branch,
Office of Operations, National Environmental Satellite Service). Direct
comparisons of new observing systems with rawinsonde observations are made
provided the pair of observations being compared are located within a space/
time "window" of each other. The window used for the comparisons of Fig. 1
is 1 degree latitude and 6 hours.

Using the notation of the preceding section, the difference between a
rawinsonde and a satellite temperature observation as close together in
space/time as possible is

Tr Ts = (Tr + er) - (Ts + es) (10)

and the mean square difference for a statistical sample of such comparisons
is

(Tr- Ts) 2 = (Tr - Ts + Sr - E) 2

= (Tr -Ts) 2 + 2(Tr - Ts)Er - 2(Tr - Ts) es

+ r- + v 2(r s )(11)
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If the observational errors are assumed to be uncorrelated with each other

or with the difference(Tr - Ts), and if additionally the space/time window
is chosen small enough so that

(Tr - Ts) 2 << er2 and es2 ,

then
es2 Tr - T s)2 -er2 (12)

Thus, the mean square satellite error can be determined if an independent
estimate of the rawinsonde error is available.

A critical point here is to choose the window small enough to justify
neglect of the difference (Tr - T ). In the example of Fig. 1, the window
allows a separation of up to 1° latitude and 6 hours between the compared
observations. Studies of the sensitivity of results to the size of the
window appear to indicate that in this case the window is sufficiently
small for the comparisons being made (C. Hayden, personal communication).

The same method may be used to compare observations with an analysis
based on other observational data. In this case, the space part of the
window problem is bypassed if the analysis is interpolated to the observa-
tional location. An independent estimate of the analysis error is required.
If the observational and analysis errors are correlated, the result is
contaminated by the presence of a non-zero term 2eaes, where ea is the
analysis error, corresponding to the term 2eres in eqn. (11).

When comparison with an analysis is done, it is preferable to exclude
the observing system whose error characteristics are being evaluated from
the data base for the analysis. The magnitude of the analysis error depends,
in part, on the magnitudes of the observational errors used in the analysis
and on any correlation that may exist between these errors. Hence these
observational errors should be independently known in order to obtain an
accurate estimate of the analysis error.

Satellite (NIMBUS) thickness temperature errors have been evaluated by
C. Hayden (unpublished) and by Schlatter and Branstator (1978) by means of
comparison with analyses based on radiosonde data. These results agree
closely with those obtained by the space/time window comparison method.

b. Observational Error Correlations

The author is aware of three methods that have been employed to
determine the error correlation of spatially distributed observations:

(1) Space-time window comparisons with other observations which do
not have correlated errors, or whose error correlation is known from other

*||i sources.
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(2) Comparison with an analysis whose spatial correlation of error
is known.

(3) Partitioning of observed-minus-forecast difference covariance
into forecast error covariance and observational error covariance through
use of empirical orthogonal functions.

The fitst two methods parallel methods already discussed which are
used to estimate the RMS observational error. Here, we may combine the
methods in one generalized treatment. Let subscript "a" refer to an
observing system (or analysis) whose error characteristics are already
known, and let subscript "b" refer to an observing system whose error cor-
relation is to be evaluated. Also, let subscript 1 refer to the location
of one of the b-observations and subscript 2 refer to the location of
another b-observation. In the following, either the space/time windows
for comparing observations a and b are assumed negligibly small, or an
analyzed field value is assumed to be known at the b-observation locations.
Then the covariance of the difference between observation (or analysis) a
and observation b for the two locations is given by

(Fa - Fb) (Fa - Fb)2= [(Fa + a)l - (Fb + b) ] [F a + a)2 - (Fb + b)2

=F F +F F -F F -F Fal a2 bl b2 al b2 bl a2

+F E +F £ + e F + F
al a2 bl b2 al a2 bl b2

-F c -F £ - F -e F
al b2 bl a2 al b2 bl a2

+ £ £ + e £ - £ £ - £ £ . (3+S s +s c -c e -s s . ~~(13)al a2 bl b2 al b2 bl a2

This formal expression may be simplified by noting that:

(1) The covariance of the true field F is independent of the observing
system, i.e.,

F F =F F =F F =F F
al a2 bl b2 al b2 bl a2

(2) The errors of different observing systems are unlikely to be cor-
related, i.e.,

E£ =£ E =0
al b2 bl a2
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If, additionally, it is assumed that observational errors are uncorre-
lated with the true field values (an assumption that may not always be
justified), the above expression reduces to

(Fa - Fb)l(Fa Fb)2 = Cal a2 + Ebl b2

or

Cbleb2 =AF AFA F 2 - ala2 (13)

where

AFi EFa- Fb)aAF (F ^-

This expression may be restated in normalized form as

(A[12 AF2
2)½ (a12a (14)

Pb1,b2 b ^ -blb2 gAF1 ,AF2 Pala2 ' (14)

where A -
iF1 F2

AF1 F2 (AF 2 AF 123
11 2 1 2~

and the definitions of the p-correlations are the same as before. Thus,
in addition to the observed difference correlation VAF AF ' information
on the correlation of the a-observation errors plus the mean-square errors
of both the a- and b-observations is required in order to compute Pblb2'

The situation is simpler when ala2 = . Then

(AP 2 ) = £b2
bi

and

Pbl,b2 = AFi,aF2 (15)

Thus, there is a distinct advantage in using observations with uncorrelated
errors as the a-observations.

Fig. 2 shows an example of isobaric correlation of satellite observed
temperature errors for ten mandatory levels combined. The satellite observa-
tions were compared with rawinsonde temperatures within a space/time window
of 2° latitude and 3 hours. The rawinsonde errors were assumed to be un-
correlated isobarically. Individual correlation profiles for each of the
ten isobaric levels were also computed, but they showed little variation
with level.
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If the b-observations are compared with an a-analysis rather than with
a-observations, then the correlation Pal a2 of (14) should not automatically
be assumed to be zero, even when the observations on which the analysis is
based have uncorrelated errors. The errors of the analysis at two points 1
and 2 may be highly correlated for one or more of the following reasons:

(1) The analysis may start from a guess field of values which, be it
persistence, a forecast, or climatology, is likely to have spatially corre-
lated errors.

(2) In grid point objective analysis, an observation is frequently used in
the analysis of more than one grid point. This may lead to correlated errors
between analysis grid points even though the observational errors themselves
are uncorrelated with one another.

(3) In spectral analysis schemes,the truncation of the spectral represen-
tation at some wave number results in spatially correlated analysis errors
which are a function of the neglected higher frequency modes.

It may turn out that, for a particular analysis scheme and data set, the
correlation Pal a2 is negligibly small compared to Pbl b2; this should not
be an a priori assumption when doing then computations, but see below.

Computations of the isobaric correlation of temperature errors for satellite
NIMBUS data have been performed by C. Hayden (unpublished) and by Schlatter
and Branstator (1978) by means of comparisons with analyses based on rawin-
sonde data. Both of these studies assume that Pa1 b2 can be neglected;
nevertheless, their results show reasonable agreement with the space/time
window comparisons of Fig. 2.

The above-mentioned investigators have also computed the vertical corre-
lation of NIMBUS temperature errors by comparison with analyses. The vertical
correlation of analysis errors was not taken into account. The results of
the two groups differ markedly, with Hayden's showing a much stronger vertical
correlation of satellite errors than Schlatter and Branstator's. Presumably,
this difference is related to the analyses used for the comparisons since the
same satellite data (NIMBUS/DST-5) was used-,by both. It should be noted that
space/time window comparisons with rawinsonde data do not give uncontaminated
estimates of the vertical correlation of satellite errors because of the fact
that rawinsonde temperatures themselves have vertically correlated errors
(see below). As a result, the neglect of vertical error correlations of an
analysis based on rawinsonde data is more likely to yield erroneous values
for the satellite vertical error correlations than in the horizontal case.

The above methods and limitations apply as well to other observing systems
whose errors are spatially correlated. Observing systems believed to have
this characteristic include satellite cloud-track winds and sequential air-
craft observations, but to date error correlation statistics have not been
computed for these systems.
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The third method, partitioning observed-minus-forecast difference co-
variances into observed and forecast error covariance components by means
of empirical orthogonal functions, is due to Hollett (1975), and the
reader is referred to this source for details of the method. Hollett has
developed the method specifically for determining the vertical correlation
of serial ascent rawinsonde errors.

Briefly, the method consists of expressing the observed-minus-forecast
difference covariance matrix for nine mandatory levels in terms of a set
of vertical eigen-functions. The covariance data may be expressed in terms
of these functions. Now, the forecast errors are correlated both iso-
barically and vertically, but the rawinsonde errors are correlated only
vertically. Thus, the degree to which each of the functions correlates
isobarically can be used to partition the function into a forecast error
component and an observational error component. From these partitioned
functions, separate forecast error and observational error covariances can
be constructed, and the observational error covariances normalized-to give
equivalent correlations. The results for rawinsonde wind components, heights,
and temperatures are shown in Table 1.

It should be.noted that the number of orthogonal functions used was
limited to 9, hence separationLof covariances into forecast error and
observational error components was necessarily incomplete. As a result,
the correlations of Table 1 are contaminated to some extent by the presence
of some residual forecast error correlation. However, Hollett demonstrates
that most of the separation is accounted for by the first five functions,
thus the remaining contamination when using nine modes should be slight.

4. Error Checking Procedures and Quality Control

Although specification of the root-mean-square observational errors and
error correlations is sufficient for the operation of an optimum interpo-
lation analysis sdheme, any operational analysis program must also include
error-checking routines to guard against the inclusion of data whose indi-
vidual error is markedly greater than the assumed RMS error level for the
observational type.

Error checking in objective analyses is usually of two kinds:

(1) Gross error check--to eliminate obviously erroneous observations.

(2) Comparative error check--to compare an observation with its neighbors
to see if it is consistent with them.

The gross error check eliminates an observation which differs by an un-
reasonable amount from climatology, a forecast, or other guess value. It
is an easy check to make, but is one which should allow for the occasional
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possibility of rather large departures from climatology or from the guess
value. In other words, this check should use a rather loose criterion and
err in the direction of retaining bad data rather than throwing out good
data. For it is precisely those observations which differ the most from
a guess field or from climatological expectation that, if correct, are of
most value in doing-the analysis.

A comparative check ("buddy check") rejects an observation if it is in
marked disagreement with neighboring observations. By the same token, it
retains an observation which shows good agreement with neighbors even though
the observation differs markedly from the guess field or from climatology.
Various types of comparative checks are used in analysis schemes. In the
Canadian operational analysis, comparative checking is done by using neigh-
boring observations to do an optimum interpolation to the location of an
observation and then comparing this value with the observed value (Rutherford,
1976). Other analysis schemes (e.g., Schlatter et al., 1976) compute
the average field value from neighboring stations and compare this with the
observed value.

The NMC optimum interpolation scheme compares the differences between
pairs of observations with the correlation of the true field, Pij, between
them. The larger the value of pij, the smaller the difference allowed
between a pair of observations. Suspect observations are flagged and are
rejected if they receive two or more flags from all possible pairings. This
procedure is designed to prevent bad observations from rejecting good obser-
vations in the comparative error check, a possibility that all such error
checking routines must guard against.

At NMC, rawinsonde soundings are subjected to a vertical consistency
check prior to their use in the analysis. Depending on the outcome of the
vertical check, a rawinsonde datum is either rejected outright or assigned
a relative quality indicator. This indicator is used in the error checking
routines of the optimum interpolation analysis code in the following ways:

(1) In the gross error check, the higher quality data are permitted wider
deviations from the guess field or climatology than are the lower quality
data.

(2) In the comparative check, a higher quality observation is not permitted
to be flagged as suspect by a lower quality observation. However, if both
of a pair of observations have the same quality indicator, both are flagged.

For example, suppose there are six observations, three of quality "A" and
three of quality "B." The observations are flagged as indicated in Table 2a,
with the total number of flags for each observation on the right. Note that
the flagging is mutual between A observations and between B observations,
but that although A observations flag B observations, the reverse is not
permitted. Observation 5 has the largest number of flags, so it is rejected
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first. Removing all the flags generated by observation 5 reduces the array
to that shown in Table 2b. Now observation 1 has the largest number of
flags, so it is rejected. The result is Table 2c. All remaining observations
have less than two flags, so they are accepted for the final analysis.

The above demonstrates a way in which indicators that are only qualitative
can be used in an analysis scheme. Quantitative estimates of observational
error are preferable, however, since they directly affect the weights
assigned and the analysis results in an optimum interpolation analysis
scheme.

Finally, some remarks about error checking are offered. For some observing
systems, a certain amount of checking is done by the data provider before the
data arrive in the hands of the data user. It is understandable that the
data provider wishes to transmit as "clean" a data set as possible, as a
high percentage of bad or questionable observations may reflect unfavorably
on the provider's observing system. Also, the analyst would like to be
spared to some extent the task of checking large quantities of data with a
high percentage of unacceptable errors. However, it should be clear from
the preceding discussion that it is not desirable for the data provider to
exercise too tight a control on the quality of his data. Gross error checks
should have relatively wide limits to allow for the possibility of unusual
(or poorly forecast) atmospheric conditions, with the proviso that analysis
schemes should of necessity have gross error checks of their own. From the
analyst's point of view, it is especially undesirable to have observations
accepted or rejected on the basis of agreement with forecast values, since
this procedure may result in a correlation of observational errors with
those of the forecast.

Comparative error checking is really the province of the analyst, who is
the only one in the position of having all the observed data available for
use in the checking. When the data provider does comparative checking, it
is likely to be done with an incomplete data set, which can well result in
good observations being rejected. Further, there is a tendency for the data
provider to make criteria for rejection too tight in order to produce what
he views as a smooth, consistent set of data. This author feels that data
providers should be discouraged from doing comparative error checking.

5. Summary

The basic theory of optimum interpolation analysis is presented, with
emphasis on the role that observational errors have in the analysis scheme.
It is shown that an estimate of the root-mean-square observational error
is required, and also that the correlation between errors of observations,
if nonzero, must be specified. Methods of determining these quantities
from -observational data statistics are discussed and examples shown. It
is desirable that these statistical determinations be carried out by both
the data provider and the data user. Finally, the need for observational
error-checking routines which either accept or reject data is indicated.
It is pointed out that the data provider should be careful not to delete
good and useful data from his product when checking for errors.
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TABLE 1

Rawinsonde error correlations as a function of pressure for U,V, Z, and T
from Hollett (1975).

850 700 S00 400 300 250 200 1SO 100

U wind component

850 1.00
700 .25 1.00

500 .12 .29 1.00
400 .10 .12 .44 1.00

300 -.00 .05 .19 .44 1.00

250 -. 02 .02 .17 .30 .56 1.00
200 .02 .06 .15 .24 .33 .46 1.00

150 .05 .09 .16 .16 .16 .23 .41 1.00

100 .04 .06 .09 .13 .09 .10 .15 .21 1.00

V wind component

850 1.00
700 .23 .1.00

500 .12 .28 1.00
400 .10 .12 .43 1.00

300 .00 .05 .18 .43 1.00

250 -.00 .03 .15 .29 .55 1.00

200 .04 .07 .14 .22 .31 .43 1.00

150 .06 .11 .14 .14 .13 .i9 .36 1.00

100 .06 .08 .11 .10 .05 .05 .12 .22 1.uO

Z (geopotential height)
850 1.00
700 .72 1.00
500 .56 .74 1.00

400 .48 .69 .91 1.00

300 .45 .63 .84 .92 1.00

250 .42 .60 .80 .85 .94 1.00

200 .38 .56 .76 .79 .88 .96 1.00

150 .38 .56 .76 .80 .87 .92 .96 1.00

100 .41 .56 .71 .76 .79 .75 .74 .83 1.00

T (temperature)

85O 1.00
700 .91 1.00
500 -.21 1.26 1.00
400 .05 -. 30 .76 1;00

300 .08 -.47 .27 .20 1.00
250 -.00 .25 -.24 -.12 .22 1.00

200 .04 -.10 .15 .17 -.15 -.10 1.00

150 -.01 .01 .08 .18 .27 .29 .38 1.00

100 -.02 -.16 -.12 -.11 .50 .77 .21 .22 1.00



Table 2

Example of Use of Flags in Comparative Data Check.

a. Flags generated by data comparisons:

1 2 3 4 5 6

1 (A)

2 (A)

3 (A)

4 (B)

5 (B)

6 (B)

F F

F

F

F

F F

F F

F

Total

2

1

1

1

3
2

b. Flags after deletion of observation 5:

1 2 3 4 6

1 (A)

2 (A)

3 (A)

4 (B)

6 (B)

F

F

F

Total

F F 2

1

1

1
F

c. Flags after deletion of observation 1:

2 (A)

3 (A)

4 (B)

6 (B)

2 3 4 6

F

Total

0

0

1

0
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